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Abstract 

The effective vector boson method for high energy collisions is put 

on a sound basis. Simple exact expressions of the left-handed, right- 

handed, and longitudinal distribution functions are derived for vector 

bosons with arbitrary (V, A) couplings. Using group-theoretical argu- 

merits, non-diagonal terms in the vector boson polarization index are shown 

io vanish identically. No approximation is introduced other than the on- 

mass-shell continuation of a regularized vwtor boson hard scattering 

amplitude. The new improved effective vector boson formula extends the 

applicability of this method to a wide kinematic region beyond that of the 

usual formulation, and it obviates the need to do case-by-case numerical 

tests. 
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INTRODUCTION 

The conventional derivation of the effective vector boson method,'y2 

fashioned after the classical Weizsacker-Williams equivalent photon 

approach, invokes a number of approximations of uncertain accuracy. The 

list of (inter-related) approximations include: small-angle (or 

'collinear') approximation, 'leading log' expansion, arbitrariness in the 

definition of vector-boson polarization vectors (as the result of the 

above approximations), the (unjustified) neglect of non-diagonal terms in 

the polarization index, and the extrapolation to on-shell vector-boson 

momentum. Previous studies of the reliability of this method depend almost 

exclusively on numerical comparisons of the effective-vector-boson calcu- 

lations with 'exact' ones for test examples on a case-by-case basis. 3 

Although such studies have yielded encouraging results so far, they do not 

provide an understanding of the reliability of the method in general. 

Neither do they suggest a systematic way of including corrections to the 

above-mentioned approximations. 

Applying a recently proposed factorization technique for analyzing 

Feynman diagrams to this problem,4 we develop a precise formulation of 

the effective vector-boson method. This implementation of the effective 

vector boson idea does not require any approximation other than the on- 

mass-shell continuation of a regularized hard-scattering amplitude. We 

also show that, due to group-theoretic considerations, off-diagonal terms 

in the vector-boson polarization sum are identically zero5 for scattering 

off massless partons. The use of precisely-defined vector-boson distribu- 

cion functions provides an 'improved effective vector-boson formula' which 

extends the region of applicability of this method, and renders the case- 

by-case numerical verification unnecessary. Due to spatial limitation, 

only salient features of the new results can be reported here. 6 In its 

present form, the formalism does not address problems associated with 

contributions from diagrams other than the vector-boson-exchange type. 7 

FACTORIZATION OF THE SCATTERING AMPLITUDE 

Consider the vector-boson exchange contribution to the generic 

process: 

f+A - f' + x (1) 

where f, f' are light fermions (leptons or quarks), A is any light parti- 

cle, and X represents an arbitrary final state consisting of at least one 

heavy particle. (The heavy particle might represent 'new physics'.) The 

momenta associated with these particles are defined in Fig.1. We use k2 = 
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k’2 = p2 = 0, -px2 = Mx2, q = k _ k’ = Px - P9 and s = -(k + p)'. We 

shall use dimensionless invariant parameters and variables 

MX 
2 

MV2 x=-( A=- q2 

s s-M,2 
, g=- 

S-M,2 
= ; (l-cosoC) (2) 

~diere ec is the CM scattering angle of f'. 

The method of Ref.4 involves applying group-theoretica; analysis to 

the numerator of the vector-boson propagator factor gpv + q q,,l Mv* (the 

polarization matrix) to write the scattering amplitude for this process in 

the explicitly factorized form: 

T = Jm(q2,Mx2,...) 
D(EB,#B)~~ 

q* + MV* 
j"(q2) . (3) 

Here fermion helicity indices have been suppressed, j"(q') = <k'IJ*en*lk> 

is the (exacrly calculable) helicity vertex function for the upper vertex4 

and Jm(q2,MX2,...) = <pxl.J 
P 

+*~,lp> is the (not necessarily calculable) 

helicity amplitude for the 'hard process' 

V*+A - X (4) 

The superscript * indicates a (space-like) virtual V-boson. D({,#lmn is 
the 'spin 1' SO(2,l) transformation, an element of the little group of qB, 

;Ihich relates the lower vertex to the upper vertex configurations in the 

Brick-Wall frame for which qp:(0,0,0,dq2). The D-function consists of a 

Lorentz boost along the x-axis (by the hyperbolic 'angle' <) and a rota- 

tion around the z-axis (by the angle #), 

D(<,#,", = .-im# d(Elmn . -(5) 

It is the analog of the familiar spin 1 rotation matrix associated with a 

Lime-like vector meson exchanged in the s-channel. See Ref.4 for details 

and the explicit expression for d(E). 

Cross-Section Formula 

The relevant cross-section is obtained by taking the square of the 

scattering amplitude (3) and integrating over the phase-space volume of 

the scattered fermion f'. A careful study of the kinematics6 reveals that 

the only 9 dependence in the integrand occurs in the exponential factor of 

the D-function, Eq.(5), provided A is massless. Hence, the integration 

over the (Brick-wall frame) azimuthal angle forces the sum over vector 

joson polarization indices to be diagonal. We choose the remaining inte- 
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gration variable to be 5, Eq.(2), and obtain an exact formula for the 

cross-section 
du 

= 
dx dr' 

x2 r: 1 ,;+;;2 h"(S) 2 (q*&,..) 
16r n 

(6) 

where dl-' is the phase-space element for the state X after factoring out 

(204d4p,, 

h" = 9; [d(5)n1]2 + g; (d'E)"1)2 (7) 

is the square of d"h j 
A 

averaged over the fermion helicities, and 

$z= 1 

dl- 
7 Jn(q * *,M2 x ,..I J,(q2,Mx2,-.) (8) 

x 

(no sum over n) is the 'hard scattering' cross-section (HSXS) for a vir- 

tual vector boson of helicity n, Eq(4). Eq.(6) is the exact cross-section 

formula for process (1) due to the exchange of a vector boson (Fig.1). 

THE EFFECTIVE VECTOR-BOSON APPROXIMATION AND THE EXACT VECTOR-BOSON 
DISTRIBUTION FUNCTIONS 

In order to derive the 'effective vector-boson' formula., we need to 

replace the HSXS (da,*) for a virtual V* by thar for an on-shell V (da,), 

and take dun out of the integration sign in Eq.(6). This is a reliable 

procedure provided the q*-dependence of do,* is 'smooth' compared to that 

of the other factors in the integrand of Eq.(6). We note, of course, that 

the propagator factor is peaked in the small 5 region with typical width 

A. Hence the reference scale for measuring 'smoothness' is A. 

There is no distinction between the transverse polarization vectors 

of a virtual vector boson and those of an on-shell boson; they are both 

independent of q*. Well-established experience in dispersion relations 

leads one to believe that do,* is indeed smooth, hence it can be safely 

replaced by the on-shell do,. In contrast, the longitudinal polarization 

vector for the virtual particle, 

EO(A : 
f I”sl 
I 2’ 0, 0, 40 1 

‘/q GJ ’ (9) 

has a 'kinematic singularity' at q* = 0 which is absent in its on-shell 

counter-part. Therefore, we must explicitly take this factor into account 
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before replacing duo* by do0 to avoid incurring unacceptable errors in the 

approximation. 

We obtain, therefore, . 
dun = f,(x) dun 

dx dr' 
F (Mx',...) , 

A 
(10) 

where * = -1, 0, 1; du,ldr' is the HSXS for an on-shell vector boson ,,f 
helicity n, and 

1 
x 

f,(x) = - 
(5 

16x2 1, (<+A)* hn(f) ' 
n = *l 

x 
fg(x) = - 

i Ads- 

16~' 1, (c+A)~ ho(f) ' 

(11) 

These are the exacfvector boson distribution functions (VBDF) for helic- 

ity n. The SO(2,l) boost parameter f which enters the d-functions in h", 

h.(7), is specified by 

coshf + 1 = 2 I [x + (l-x)<] . (12) 

It is convenient to introduce F, = fl l f-1. (F+ is just the 'transverse' 
vector boson distribution function of the original literature. 

explicit expressions for the exact VBDFs are: 
192) The 

‘r F+(x) = a+x 
b 

5 ds- 
(<+A)’ (cosh2f + 1) , 

fo(x) = a+x (cosh'f - 1) , (13) 

F-(x) = a-x / ,;+;;2 ash f 9 

l 

where a = (gR2fgL.2)/32r*. These integrals only involve simple rational 

fractions, and can easily be done in closed form. 

given elsewhere.6 
The results will be 

APPROXIMATE DISTRIBUTION FUNCTIONS 

In order to compare the exact distributions with the 'leading log' 

approximations (in the expansion of the small parameter A) in the litera- 
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ture,l,2 we note that the leading term in each integral arises from the 

lower end of the integration range, which can be extracted by replacing 

cash< with its value at 5 = 0, i.e., (~-X)/X. The results obtained far F+ 

and fo agree with those given in refs. 1 and 2. We have, in addition6'*, 

F-(x) 2 a- (2-x) log(l/A) . (14) 

As is well kncwnlP2, the leading term in fo is independent of A, and sub- 

leading terms vanish in the limit A + 0; thus the asymptotic formula 

should be quite accurate. Conversely, the leading terms in F, are propor- 

tional to log A, as shown above, and the sub-leading terms do not vanish 

as A + 0. From the exact expressions for F, , we can easily derive the 

terme independent of A.6 These terme turn out to be numerically signifi- 

cant compared to the leading-log terms and are opposite in sign for most 

relevant kinematic regions. It is, therefore, necessary to use the exact 

formulas whenever transverse polarization cross-sections are non- 

negligible. The asymptotic formulas for the transverse distributions, 

including the constant terms, are 

F+ = 20+ { [l + (l-x)'] [log(l/A) - 11 

- 2 (1-x) [log(l/x) + l] } I x 
(15) 

F- = a-{ (2-x) [log(l/A) - l] - 2 log(l/x) ] . 

These formulas are, in principle, accurate to the same degree es 

that for fo. Terms neglected are of order Alogh. (These terms can be 

significant when the two leading terms cancel each other, as happens for 

small A and x " loA.) 

In Fig. 2 we compare the exact distribution functions es given by 

Eq.(13) to the 'leading-log' distributions given by refs. 1,2 for a sub- 

process energy of 1 TeV. For x > 10-2, the 'leading-log' approximation 

for the longitudinal distribution matches the exact distribution quite 

well (never wocw than a factor of 2). However, the transverse distribu- 

tions differ greatly from the exact functions for rees~ns described above. 

This difference will not be noticed as long es we deal with processes 

where the longitudinal HSXS totally dominates the transverse one (such as 

heavy quark and Higgs boson production). Fig. 2 does show, however, that 

calculations based on leading-log VBDF can give quite erroneous results if 

the transverse HSXS happens to be comparable or larger than the longi- 
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cudinal one. When we are looking for 'new physics', this possibility 

should not be ignored a priori. 

AN EXAMPLE: HEAVY QUARK PRODUCTION. 

To illustrate the above ideas, we consider the specific example of 

heavy quark production as a special case of the situation depicted in 

Fig.1. In this simple case, the final state phase space factor dr' is 

trivial, and we make the replacement dx dr'=Z.r/s in Eq.(lO). Using 

techniques of ref.4 for evaluating J(M,), we easily find the exact (off- 

shell) HSXS is: 

d;: g2 s+x d;; g2 s+x 
;;i;r'T, ' $T=;T' (16) 

and the minus helicity cross-section vanishes for a W-boson. Note the 

kinematic singularity at 5 = 0 in the longitudinal HSXS. We now compute 

the helicity cross-sections in three ways, and compare the results. 

The exact cross-sections can be obtained by substituting the precise 

HSXS of Eq.(16) into Eq.(6), and then performing the complete integration. 

The results are plotted in Fig.3 for parton-parton sub-energy $s=l TeV as 

solid lines. 

Next we make the 'on-shell' approximation by evaluating the regula- 

rized HSXS at $=A and pulling it out of the <-integration. Regularization 

involves incorporating the singular factor l/s of dug* in Eq.(16) into f0, 

and replacing it by I/A, appropriate for an on-shell amplitude. We then 

use the exact expression for the VBDF's f,(x), Eq.(13), to obtain an. 

'improved effective-vector-boson approximation' to the overall cross- 

section. The results. shown as dashed lines in Fig.3, agree well with the 

exact results. This is expected, as the regularized HSXS's are indeed 

smooth on the scale A. 

Finally, we compute the cross-sections in the same way, but use the 

conventional 'leading-log' formulas for the VBDF's. The corresponding 

curves in Fig.3 show that the 'Leading-log' results for the Longitudinal 

cross-section is satisfactory except for small-x; but, those for the 

transverse cross-section yield gross over-estimates of the real values. 

By performing similar comparisons for a wide range of \/s and M, 

values, we conclude that the effective vector boson method is very 

accurate i_f the exact distribution functions are used. In contrast, the 

'leading-log' approximation is reliable only if the longitudinal cross- 

section overwhelmingly dominates and, in addition, if 4s (parton-parton 
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total energy) is above 1 TeV. We find that the leading-log transverse 

cross-section is too big by a sixniffcant factor (2 to 10) for most 

relevant values of Js due to an interesting cancellation of the leading 

term with the remainder. 

CONCLUSIONS 

We have given a precise formulation of the effective vector boson 

method which eliminates most of the approximations of the conventional 

approach. Exact vector boson distributions are given. Reliability of the 

method is tied uniquely to the smoothness of the hard-scattering cross- 

section in the variable q2 over the range q2 2 Mv2, and is totally freed 

from restrictions on the range of kinematic variables. Due to the gener- 

ality of the formulation, numerical results presented in the last section 

should be quite representative of many applications. 



FIGURE CAPTIONS 

FIGURE 1: A general Feynman diagram for the process f+A+V+f'+X. 

FIGURE 2: The VBDF'S at d/s=1 TeV. 

FIGURE 3: The helicity cross-sections (in GeVm2) for heavy quark 

production at da=1 TeV. 
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